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LEITER TO THE EDITOR 

Self-consistent treatment of impurity influence in quantum 
systems at T = O  

G Busiello, L De Cesare and I Rabuffo 
Dipartimento di Fisica Teorica e SMSA, Universita di Salerno, 84100-Salerno, Italy and 
Gruppo Nazionale di Struttura della Materia, 84100-Salerno, Italy 

Received 3 June 1985 

Abstract. The zero-temperature properties of quantum systems in the presence of quenched 
impurities which couple quadratically to the order parameter are investigated by means 
of a self-consistent treatment. A physical interpretation of the renormalisation group fixed 
point instability recently discovered is suggested and a comparison with some experiments 
on doped quantum incipient ferroelectrics is also made. 

The influence on quantum critical behaviour of quenched impurities which couple 
quadratically to the order parameter has been the subject of recent renormalisation 
group (RG) investigations (Busiello et a1 1984a, b, Korutcheva and Uzunov 1984). At 
temperature T # 0, when quantum fluctuations are irrelevant, the well known results 
for classical systems both for short-range (Ma 1976, Grinstein et a1 1977) and long-range 
(Weinrib and Halperin 1983) correlated impurities are reproduced. At T = 0, it turns 
out that, for dimensionalities such that pure quantum systems show a critical point, 
the randomness does not create, surprisingly, stable fixed points as it should be 
whenever a second-order phase transition is present. 

An analogous unusual impurity effect occurs at arbitrary temperature also in 
quantum systems which show tricriticality in the absence of disorder (Busiello et a1 
1984~).  

Since the RG results do not allow us to give a clear picture of this strange effect 
which arises from the competition between quantum and random fluctuations, in our 
opinion further theoretical and, possibly, experimental investigations need to be done 
in order to clarify the physical meaning of the above fixed point instability. 

In this letter we deal with the problem by using a self-consistent approach, which 
is exact in the large-n limit ( n  is the number of order parameter components) but gives 
a correct qualitative picture of the physics for real systems which show a ( T = 0) critical 
point when the disorder is absent. As the above peculiar effect of quenched impurities 
is independent of the particular quantum model, we refer, for explicit calculations, to 
bosonised models (Busiello and De Cesare 1980, Busiello et a1 1983) and a continuous 
field model for structural phase transitions (Opperman and Thomas 1975, Morf et ai 
1977, Millev and Uzunov 1983). This choice assumes some relevance since these 
models represent the prototypes of quantum systems without and with dimensional 
crossover for T + 0, respectively, when the randomness is lacking (Busiello et a1 1983). 
Here we limit ourselves to the zero temperature regime which, in our opinion, deserves 
particular interest from theoretical and experimental (or simulational) point of view. 
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In this way we hope to stimulate new deeper investigations in order to obtain a definitive 
insight into the physical nature of the mentioned impurity effect which occurs in 
quantum systems when thermal fluctuations vanish. 

A complete discussion for arbitrary temperature, also including an analysis of 
quantum crossover phenomenon which occurs for T + 0, will be given in a future work. 

Our starting point is the 'generalised quantum functional' (Busiello et al 1984b): 

w+, V I =  Y c (ro+ k"+f ( s ) ) l@(s )12  
j = l  q 

O<lkl<l  

q = ( k , o , ) ,  or=27rlT (l=O,*1,*2 ,... ), O < a s 2 ,  + ( q ) s { + ' ( q ) ;  J =  

. , n/2} is a complex n/2 - component field, V is the volume of the system and 
a function depending on the particular model under study. For instance, one 

has f( q) = -iol for bosonised models and f( q) = of for structural phase transitions. 
The explicit definition of the coupling parameters r, and U, for different models is not 
necessary in the present investigation. 

In (1) q ( k )  is the Fourier transform of the random variable q ( x )  which describes 
the quenched impurities with Gaussian averages: 

[(P(k)I," = 0, [q ( k ) q  (k')lav = S k , - k ' g ( k )  (2) 

g ( k )  =r A,, +Ao2k-(d-"), a > 0. (3) 

where for small k (Weinrib and Halperin 1983): 

With (3) we refer to the general case of quenched impurities which are correlated as 
Ix -y(-' for large distances, a being a positive parameter of the model. 

Making use of the replica trick (Edwards and Anderson 1975, Emery 1975), the 
original random problem without translational invariance can be reduced to a pure 
one characterised by an effective action 

x $3 4 1  1 rV3 q2) CL 1, ( q 3 )  vi ( q 4 )  (4) 

which is a functional of m replications { +, ; a = 1, . . . , m} of the original field +. 
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Now, our aim is to calculate the physical susceptibility ,y of the random system 
because the divergence of this quantity constitutes a test of criticality. It is defined as 

x = lim gR(k, U )  
k-0 
w - 0  

where the retarded response function is obtained as the analytical continuation to the 
real frequency axis of the temperature propagator $ ( q )  = [(l$i(q)12)],v. Since this is 
expressed in terms of the replica fields as 

the calculation of ,y reduces to an evaluation of the replica propagator G(q) = 
( I + ~ ( q ) 1 2 > ~ e , .  With this in mind, let us regard the term: 

a = l j = l  q 
O i l  k (  < 1 

with r = x - ' ,  as the 'free part' of the effective action. Of course, this procedure will 
involve a counterterm in the 'interaction part' of Xefi given by 

Within this scheme the replica propagator will be determined by the Dyson equation 

G-'(q)=  r + k " + f ( s ) + C  (4 ,  r )  (9) 

where Z( q, r )  is the usual self-energy part (Ma 1976). By valuing this term to the lower 
order in the coupling parameters uo, Aol,  Ao2 and by inserting the corresponding 
expression for G(q) in the limit process (6), from ( 5 )  we obtain, in the thermodynamic 
limit, the following self-consistent equation for r = x-': 

(10) 
where Kd = 21-d~-d'2/T(d/2) .  

transitions. 
Now, we study (10) at T = 0 separately for bosonised models and structural phase 

Bosonised models. In this case, at T = 0, the self-consistent equation (10) reduces to: 

1 x"-l 

G,(r) = I, d X , + x .  p = d/u, a / ( .  (12) 

The critical expression roc = roc(Aol, AO2) of the parameter ro is obtained, as usual, 
setting r = 0 in ( 1  1 ) :  

~d'-1(AOIGd/o(~)+A02~o/~(~)) (13) 
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where G, (0) ( p  = d / a, a /  a)  are finite quantities only for p > 1. This means that for 
short-range impurity correlations ({Aol f 0, AO2 = 0) or {Aoi # 0 ( i  = 1,2) with a 3 d } )  
a (T=O) critical point may exist only for d / a >  1 ,  while, for long-range ones, it 
may occur only for a l a >  1 and arbitrary d >0, if Aol =0, or for d / a >  a /c r>  1 if 
Aoi#O ( i = 1 , 2 ) .  

Remember that for pure bosonised models a ( T = 0) Gaussian critical point exists 
for any d > 0 (Busiello and De Cesare 1980, Uzunov 1981, De Cesare 1982, Kopec 
and Kozlowski 1983, Chubukov 1985). 

In order to study the behaviour of the random model in terms of the deviation of 
the parameter ro from its ( T = 0) critical value when a second-order phase transition 
exists, it is convenient to introduce the variable g = ro- roc. Then ( 1  1) can be rewritten 
as : 

= g - KdU- ( A01 G d /  u ( r )  + A02 Gb/ m ( r )  (14) 

with &,(r)  = G,(r)-G,(O). Of course, we are interested to find solutions of self- 
consistent (14) for r + O+ From a straightforward analysis of (14) in the limit g + O+, 
it emerges that: 

(i) When quenched impurities are short-range correlated (Ao2 = 0 or a z- d ) ,  one 
has a mean field ( MF) critical behaviour for d /  a > 2, but no thermodynamically stable 
diverging solution for susceptibility is found for 1 < d / u  S 2. Physically, this may be 
interpreted as a thermodynamic instability of the ( T  = 0) pure critical behaviour 
induced by the impurity fluctuations. Thus, for such dimensionalities, the point 
( T = 0, roc) is inaccessible and no long-range order is possible. 

(ii) When long-range correlated disorder is present with Aoi # 0 ( i  = 1,2), a MF 

regime occurs for d / a >  a l a >  2. For different values of d / u ,  a / a >  1 ,  no physical 
solution of (14) approaching the critical point is found and this indicates, as in (i), 
instability of pure Gaussian critical behaviour towards impurity perturbations. 

(iii) Finally, for bo, = 0, a l a >  2 and arbitrary d > 0, the randomness is irrelevant 
and the ( T = 0) critical behaviour of pure system is reproduced. For 1 < a / a  d 2 the 
impurity fluctuations prevent the critical point from being approached along stable 
thermodynamic paths as in (i) and (ii). 

Structural phase transitions. In the quantum regime, ( 10) for inverse susceptibility 
becomes: 

r r0 + ( n + 2) uOA ( d, F d /  u ( r )  - KdU-' (A01 G d  / u ( r ,  + A02 Ga/ u ( r )  (15) 
where A ( d ,  a )  = K d / 8 a  and 
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An analysis of this equation for r + 0' yields a physical picture very similar to that 
for bosonised models. In particular cases (i)-(ii) remain unchanged but in the long- 
range case for Aol = 0 some quantitative differences are found as a different manifes- 
tation of quantum fluctuations. From (16) it follows in fact that 

f o r { d / a > t ,  a / a > 2 }  

and, in the borderline region { d / a = i ,  a / a a 2 } ,  logarithmic corrections to MF 

behaviour are present. This is exactly the critical behaviour which appears in the pure 
system at quantum displacive (Oppermann and Thomas 1975, Morf et a1 1977) also 
involving long-range interactions. Thus, for long-range correlated quenched impurities 
with Aol = 0 and the parameter a satisfying the conditions above specified, the disorder 
effects on pure quantum critical behaviour appear to be irrelevant. For different values 
of a / a >  1,  the impurity fluctuations are sufficiently strong to prevent the occurrence 
of criticality. 

The previous results show, in particular, that, for short-range interactions (a = 2), 
a ( T  = 0) second-order phase transition is possible in real quantum systems (d = 3) 
with impurities of the type here considered, only if Aol =0,  A O 2 f O  and a s 4  for 
structural phase transitions and a > 4  for bosonised systems. In other cases, for 
dimensionalities of physical interest, thermodynamic instabilities towards impurity 
perturbations may occur which inhibit long-range order. 

The above picture agrees with the RG predictions (Busiello et a1 1984a, b) in the 
sense that we do not find a positive vanishing inverse susceptibility in regions of the 
(d / a ,  a l a )  plane where the RG analysis does not predict stable fixed points. This 
suggests that the RG fixed point instability, induced by impurity fluctuations in quantum 
systems at T = 0, may be interpreted as corresponding to the physical impossibility of 
a continuous transition to an ordered phase. By varying the impurity concentrations, 
roc = roc (Aol, Ao2) is a line of thermodynamic instability (x + -a) in the phase diagram 
of the system. In particular, when short-range disorder is present, we find x a -g - (d 'w- l )  
for 1 < d / a  < 2 and xa -g-- ' ln- 'g- '  for d / a  = 2. Notice that from thermodynamic 
point of view, similar circumstances occur also in other systems of physical interest 
(Rice 1954, Larkin and Pikin 1969) and are usually considered as indications of the 
existence of a first-order phase transition. 

Of course, new insight into this problem can arise from experiments. Unfortunately 
no clear experimental results about quenched impurity effects on ( T  = 0) quantum 
critical behaviour are available at the present. This is mainly due to the difficulty of 
identifying the relevant type of defects involved in the laboratory samples (Aksenov 
and Didyk 1984). However, some recent experiments on quantum incipient ferroelec- 
trics in the presence of impurities (Hochli and Boatner 1977, 1979, Hochli et a1 1977, 
1978, Rytz et a1 1980, Prater et a1 1981), may give indirect indications on the validity 
of our previous physical scheme. The term 'incipient ferroelectric' has been employed 
to describe materials, such as KTa03 and SrTiO,, which exhibit a rapidly increasing 
dielectric constant with decreasing temperature consistently with an ultimate ferroelec- 
tric transition at T = 0. Nevertheless in such pure materials, ferroelectricity can be 
induced by pressure (Uwe and Sakudo 1975, 1976). 

While Li quenched impurities, which are expected to couple linearly to the order 
parameter in KTa03 (Hochli et a1 1978), destroy the ferroelectric order in the host 
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system at T = 0, a spontaneous polarisation has been found in KTa0,:Nb for a Nb 
concentration of x, = 0.008 (Hochli et al 1977, Prater et al 1981). Experiments suggest 
that, in KTa03, Nb shows no evidence of being a symmetry-breaking defect (Prater 
er a1 1981) and it is assumed that it couples quadratically to the order parameter in 
contrast to Li impurities. Furthermore, there are also indications (Hochli and Boatner 
1979) that Nb impurities must be long-range correlated and the involved effective 
interactions are short-ranged ( a  = 2). Finally, a MF behaviour with logarithmic correc- 
tions is found at T=O in terms of r o - r o c a x - x x ,  (Hochli er al 1977, Hochli and 
Boatner 1979, Rytz er a1 1980) as for pure structural phase transitions -at the quantum 
displacive limit. Analogous properties are also true for KTaO, : Na. All these experi- 
mental results can be simply interpreted within our theoretical scheme which may give 
also information about the structure of the random correlation function. Indeed, the 
previous theoretical provisions for structural phase transitions impose g( k )  = A o z k - ( d - a )  
and, for d = 3 and a = 2, long-range order survives only if a 5 4; this implies the MF 

result y = 1 with logarithmic corrections for susceptibility. As a consequence, for 
KTaO, : Nb near criticality, we should have g( k )  - k" for k + 0 with (Y = a - 3 s 1. 

In conclusion, we think that structural phase transitions at the quantum displacive 
limit will constitute a good framework for clarifying theoretical, experimental and 
simulationa1 investigations of the strange effect induced by impurities in quantum 
systems at T = 0. 
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